
J. Fluid Mech. (2006), vol. 547, pp. 55–64. c© 2006 Cambridge University Press

doi:10.1017/S0022112005007391 Printed in the United Kingdom

55

Asymmetry of temporal cross-correlations
in turbulent shear flows

By A. JACHENS1, J. SCHUMACHER1, B. ECKHARDT1,
K. KNOBLOCH2 AND H. H. FERNHOLZ 2

1Fachbereich Physik, Philipps-Universität, D-35032 Marburg, Germany
2Hermann-Föttinger-Institut, Technische Universität, D-10623 Berlin, Germany

(Received 4 March 2005 and in revised form 28 September 2005)

We investigate spatial and temporal cross-correlations between streamwise and normal
velocity components in three shear flows: a low-dimensional model for vortex–streak
interactions, direct numerical simulations for a nearly homogeneous shear flow and
experimental data for a turbulent boundary layer. Driving of streamwise streaks by
streamwise vortices gives rise to a temporal asymmetry in the short-time correlation.
Close to the wall or the bounding surface in the free-slip situations, this asymmetry
is identified. Further away from the boundaries the asymmetry becomes weaker
and changes character, indicating the prevalence of other processes. The systematic
variation of the asymmetry measure may be used as a complementary indicator to
separate different layers in turbulent shear flows. The location of the extrema at
different streamwise displacements can be used to read off the mean advection speed;
it differs from the mean streamwise velocity because of asymmetries in the normal
extent of the structures.

1. Introduction
Coherent structures are very effective in transporting momentum across velocity

gradients and thus contribute significantly to frictional drag in turbulent flows.
Depending on the type of flow and the position of the layer being studied, different
kinds of structures can be identified (Robinson 1991; Panton 2001). In wall-bounded
shear flows, Robinson (1991) describes a dominance of streamwise vortices close to
the walls and horseshoe-like structures in the outer region. In between a gradual
transition in relative weight from one to the other could be expected. In transitional
internal flows at low to intermediate Reynolds numbers streamwise vortices and
streaks are also present (Eggels et al. 1994; Hof et al. 2004; Grossmann 2000), and a
complete self-regenerating cycle for the dynamics, in which vortices drive streaks which
then generate vortices through a shear instability, has been proposed (Waleffe 1997).
The relation between internal and wall-bounded flow situations has been established
through simulations in laterally confined geometries which show a similar dynamical
behaviour (Hamilton, Kim & Waleffe 1995). The presence of vortices and streaks in
flows with homogeneous shear (Kida & Tanaka 1994; Schumacher & Eckhardt
2001) and calculations using rapid distortion theory (Nazarenko, Kevlahan &
Dubrulle 2000) highlight the significance of the background shear in their evolution
and dynamics.

Streamwise streaks result from the mixing of fluid across the shear gradient as
induced, for instance, by streamwise vortices. This is a linear process that suggests
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a causal relation between their appearance: the vortices have to be there first, and
can then be followed by the streaks. With the pointwise measurements in boundary
layers in mind, we take velocity components as indicators for the structures: the
streamwise turbulent velocity component u for the streaks and the wall-normal or
shear component v for the vortices. The temporal correlation can then be verified
for linear models of the vortex–streak interaction by direct calculation (Eckhardt &
Pandit 2003). In particular, the model shows that the temporal cross-correlation
function Cvu(�t) = 〈u(t + �t)v(t)〉t will be asymmetric, and it will have its extremum
at a finite time delay �t . The vortex as measured by v could influence the streak
in u for �t > 0, but not for �t < 0. The question we address here is the extent to
which this causal relation is reflected in an appropriate temporal correlation function
in fully developed turbulent flows.

The correlations we are interested in can be obtained from two-point data, from
measurements displaced in space or time or both. Apparently, the first such data
were obtained by Blackwelder & Kovasznay (1972) in a turbulent boundary layer.
Their correlations for y/δ ≈ 0.2 show a weak asymmetry under �t → −�t .
(Throughout this work, the boundary layer thickness δ is defined as the distance
between the wall and the height y where U =0.99U∞ with the free-stream velocity
U∞.) Later, Blackwelder & Eckelmann (1978) studied cross-correlations between
normal derivatives of the velocity components, and confirmed the asymmetry, as well
as a shift in the maximum towards a positive time shift. Lagrangian studies of this
cross-correlation along particle paths also show this asymmetry (Pope 2002).

Fully turbulent dynamics differ from the linear model with stochastic forcing
by the presence of nonlinearities and a self-consistent generation of the turbulent
fluctuations. In addition, the self-sustaining cycle proposed by Waleffe (1997) for
the complete dynamics consists not only of the non-normal amplification but also
of a linear instability that generates normal vortices which are then tilted into the
streamwise direction by the main flow. The asymmetry is a property of the first part
of the cycle, but not of the second. The correlation function of the full cycle will
thus be a superposition of the contributions from both parts, and the asymmetry will
appear if the statistical weight of the second part is smaller than that of the first part.

With this in mind, we analyse the cross-correlation functions of the turbulent
velocity components to seek evidence of the dynamical processes underlying the
self-sustaining mechanism for the formation of coherent structures. We will study in
detail data from a low-dimensional model, from direct numerical simulations (DNS)
of shear flows and from measurements with hot-wire probes in a boundary layer.
The model allows detailed tracking of the dynamics of the various contributions to
the spatial and temporal correlations. The DNS allows an extension to two-point
cross-correlations in space and time since they do not rely on Taylor’s frozen flow
hypothesis. Finally, the experimental data, although restricted to time asymmetry,
allow much higher Reynolds numbers and a systematic study of the dependence of
the correlation functions on the distance from the wall.

We take coordinates with x in the streamwise, y in the wall-normal and z in the span-
wise directions. The quantity we focus on is the correlation function between the
wall-normal velocity component v and the streamwise component u, displaced in the
streamwise direction by �x and in time by �t ,

Cvu(�t, �x; y) =
〈v(x, y, z, t)u(x + �x, y, z, t + �t)〉x,z,t

〈v(x, y, z, t)u(x, y, z, t)〉x,z,t

. (1.1)
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The averages are over time and also over all points in a (x, z)-plane at fixed height y

(in the model and the DNS). Time correlations at one point are given by

C̃vu(�t; y) = Cvu(�t, 0; y) =
〈v(x, y, z, t)u(x, y, z, t + �t)〉x,z,t

〈v(x, y, z, t)u(x, y, z, t)〉x,z,t

. (1.2)

In order to quantify the asymmetry effects we introduce the following measure for
the temporal cross-correlations:

Qvu(�t) =
C̃vu(�t) − C̃vu(−�t)

C̃vu(�t) + C̃vu(−�t)
(1.3)

(the dependence on height is suppressed in these expressions). For the extended
correlations due to the non-normal amplification we expect |C̃vu(�t)| > |C̃vu(−�t)|
such that Qvu > 0 for these cases.

2. Low-dimensional model of turbulent shear flow
The linear model of Eckhardt & Pandit (2003) can be extended to a nine-

dimensional representation of shear flows, as discussed in more detail in Moehlis,
Faisst & Eckhardt (2004). The system is confined between two free-slip planes and
driven by a volume force that sustains a laminar sinusoidal flow profile. The model
captures the non-normal amplification process and completes it with modes for
transversal shear and instabilities of the streamwise streaks. With Ly = d/2, the
aspect ratio is Lx:Ly:Lz = 2π:1:π, and we simulate the flow at a Reynolds number
Re =U0d/(2ν) = 180, where the reference value for the velocity U0 is determined from
the sustained laminar velocity profile at y = d/4 with d being the distance between
the free-slip planes.

With the Galerkin modes ui(x) and the amplitudes ai(t) we can write the turbulent
velocity field as

u(x, t) =

N∑
i=1

ai(t)ui(x). (2.1)

The spatial part of the cross-correlations can be calculated analytically from the
prescribed modes ui(x). The temporal part follows from the numerical solution of a
system of ordinary differential equations for the ai(t) that results using (2.1) from the
Navier–Stokes equations. Equation (1.1) then becomes

Cvu(�t, �x; y) =

N∑
i,j=1

〈ai(t)aj (t + �t)〉t 〈vi(x, y, z)uj (x + �x, y, z)〉x,z. (2.2)

Of the 45 possible pairs of modes that could contribute to the correlation function
only four terms, involving five modes, do. The modes that contribute are: u2, a
streamwise streak with no streamwise variations; u3, a streamwise vortex; u6 and u7,
which describe two different wall-normal vortices; and u8, a mode that depends on all
three coordinates. Thus Cvu =C3,2

vu + C8,6
vu + C8,7

vu + C8,8
vu where the superscripts indicate

the particular mode couplings. Of these correlators, C3,2
vu is exactly the one that probes

the relation between streamwise vortices and streaks and therefore should have a
significant variation with respect to �t . This is indeed the case, as figure 1 shows.

When all contributions are collected, the space–time contours for Cvu(�t, �x; y)
at y/(d/2) = 0.52 are obtained (figure 2a). The time correlations at a fixed position
correspond to a cut along �x = 0 (cf. figure 2b) and the space correlations for fixed
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Figure 1. The time correlation function for the four modal pairs that contribute to the
cross-correlation function in the nine-mode model: �, C8,6
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Figure 2. (a) Space–time cross-correlation Cvu(�t,�x; y) in the low-dimensional model taken
at a height ỹ = y/(d/2) = 0.52. The contour levels increase in steps of 0.1. The solid line
represents the dimensionless mean velocity U (ỹ = 0.52) = 0.74. (b) A cut through the contour
plot in (a) at �x = 0 gives the temporal cross-correlation C̃vu(�t; y). (c) Asymmetry measure
Qvu(�t) corresponding to (b). This measure is independent of y due to the spatial mode
dependence.

time from a cut at �t = 0. The time correlation function is negative, as expected
for a flow where the streamwise velocity increases in the positive y-direction. It is
asymmetric and the asymmetry gives a positive Q in the centre of the layer (figure 2c).
Because of the small number of modes in the system a more detailed dynamical system
study is possible. An analysis of the periodic orbits in Moehlis, Faisst & Eckhardt
(2005) shows that some of them clearly follow the vortex–streak–instability sequence,
but several do not. Nevertheless, the correlation functions in figure 2 show that the
temporal asymmetry expected from the non-normal amplification process persists
even after taking time averages.

Besides this similarity, there are differences to the linear model. The contour levels
(figure 2a) show a global minimum that is shifted from the origin toward (�t, �x) ≈
(1, −1) for this particular height. The shift in time stems from the streak–vortex
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Nx × Ny × Nz Lx : Ly : Lz U S ε urms S∗ Rλ

DNS-1 128 × 65 × 128 2π : 1 : 2π 1 2 0.04 0.37 6.1 79
DNS-2 256 × 129 × 256 2π : π : 2π 3/π 6/π 0.44 1.08 5.0 166

Table 1. Parameters of the two DNS used in the analysis. U is the mean streamwise velocity
at the free-slip boundary. The mean energy dissipation rate is ε = 15ν〈(∂u/∂x)2〉, as in the
experimental determinations. S = dU/dy is the constant shear rate. The root mean square
velocity is urms = 〈u2〉1/2, the dimensionless shear parameter is S∗ = Su2

rms/ε and the Taylor
microscale Reynolds number Rλ =

√
15/(νε) u2

rms . The spectral resolution criterion kmaxη > 1 is

satisfied with kmax =
√

2Nx/3.

coupling contributions C3,2
vu and C8,6

vu , and is compatible with the stochastic model
(Eckhardt & Pandit 2003). The spatial shift can be traced back to the coupling of
mode 8 with itself, 〈v8(x, y, z)u8(x + �x, y, z)〉x,z = π/(5 + π2) sin(�x/2) sin(πy) for
−1 < y < 1. The space–time contours are elongated along an axis whose slope has
dimensions of velocity. This velocity is not the mean velocity at the height of the
measurement. As we will show below, this is due to an asymmetry in the width of the
structures in the normal direction.

3. Nearly homogeneous shear flow
The direct numerical simulations of a turbulent shear flow also refer to a flow

bounded by two parallel free-slip plates, driven by a volume force that sustains a
linear shear flow in the mean, U (y) = Sy, except for a small boundary layer near the
plates. Details of the numerical simulations are given in Schumacher & Eckhardt
(2000) and Schumacher (2004). Relevant parameters for the simulation are listed in
table 1.

Space–time contours for the cross-correlations in run DNS-1 are shown in
figure 3(a). Several features are similar to the ones in the low-dimensional model: they
have the same asymmetry with respect to time and the isocontours are oval and not
aligned with the coordinate axis. Thus, even though more spatial degrees of freedom
are present, the Reynolds number is higher and the turbulence is fully developed, the
non-normal amplification is reflected in the Eulerian cross-correlation function.

However, there are noticeable additional features. The asymmetry measure shows
a pronounced height dependence, being strongest close to the bounding surfaces and
getting weaker towards the centre. In addition, it shows a time interval where its value
is negative, Qvu < 0 (see figure 3c). This interval is almost negligible close to the walls
and becomes longer as the reference position moves towards the centre. We see this
phenomenon as linked to the difference in the number of modes that can contribute,
and hence to the possibility of additional dynamical processes. Assuming that the
smallest scale is set by dissipation and does not vary much across the flow, the largest
scale for the possible structures is set by the distance to the free-slip boundary. By
this reasoning there are fewer active modes close to the wall than in the centre, thus
limiting the nonlinear interactions and highlighting their correlations.

A spatial plot of the streamwise turbulent velocity component u and the shear
component v in the (x,z)-plane for one point in time and at a fixed height y in the
layer (see figure 4) reveals that the contributions to the cross-correlation function come
from fragmented regions, of an extent compatible with the dimensions of coherent
structures. Negative contours of v indicate streamwise vortices which generate the
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Figure 3. Space–time cross-correlation Cvu(�t,�x; y) of a nearly homogeneous shear flow.
Data are taken from DNS-1 (see table 1) at a height y/Ly = 0.11. The Reynolds number
Re = ULy/ν = 1800 where U is the mean turbulent velocity at the boundary. (a) Space–time plot
of the cross-correlations. The contours increase in steps of 0.1 and the unit value is at the origin.
The solid line represents the dimensionless mean turbulent velocity U (y/Ly = 0.11) = 0.77.
(b) Temporal cross-correlation along �x = 0 for different heights: � : y/Ly = 0.13, �, y/Ly =
0.25; �, y/Ly = 0.50. (c) Asymmetry coefficient for C̃vu(�t; y) at the same heights as (b).
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Figure 4. Snapshot of the two turbulent velocity fields entering the cross-correlation function.
A slice cut from a sample of DNS-2 (see table 1) is taken. The turbulent streamwise velocity u
is indicated by shading for values of u between 0 and 1.5, only. The contour lines show three
isolevels of the wall-normal component v at values of −0.8, −0.5 and −0.2. The maxima are
shifted relative to each other by a small streamwise distance that corresponds to the shift of
the maximum of the space–time cross-correlation by �x, as visible in figure 3(a).

streamwise streaks (shown as grey-filled contours of u). The maxima of u and v

contours are displaced slightly, in accordance with the off-set in the maximum of the
spatial cross-correlation in figures 2(a) and 3(a).
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Figure 5. (a) Contour plot of spatial autocorrelation function Cuu(�x,�y; y0) as given by
(3.1) in streamwise and wall-normal directions taken at y0 = 1/4 from DNS-1. The inclination
of this structure is about 9◦. (b) A cut through the contour at �x =0, indicating how the two
widths at half of the maximum, �1 and �2, of the resulting autocorrelation function are defined.
(c) Comparison of the mean (U ) and the convection (Uc) velocities for data from DNS-1.Black
solid line shows mean velocity as a function of the wall-normal distance y. The symbols stand
for the corresponding convection velocity as given by (3.2).

The off-set can be explained by the observation that a streamwise vortex pair
centred at height y will be advected with the corresponding mean streamwise velocity
at that height, U (y). The pair will mix slower moving fluid into a region that moves
on average faster, and hence will temporarily reduce the local advection velocity Uc to
values below the mean velocity U (y). But since Uc will advect the streamwise streak
that is about to be lifted up, it will remain behind the vortex pair, resulting in the
spatial shift of the most intense cross-correlation.

The correlation functions shown in figures 2 and 3 and many others for different
aspect ratios and Reynolds number show an inclination of the isocontours in the
spatio-temporal correlations Cvu(�t, �x; y). Since the two axes being compared have
dimensions of time and length, the inclination has the dimension of a velocity: but
as the comparison with the straight lines in both figures shows, the velocity with
which these structures are advected is systematically lower than the mean velocity
at that height, U (y). We can trace this effect back to an asymmetry of the spatial
autocorrelation function of the streamwise turbulent velocity in the normal direction,
as measured by

Cuu(�y; y0) = 〈u(x, y0, z, t)u(x, y0 + �y, z, t)〉x,z,t . (3.1)

Figure 5(a, b) shows that this function is asymmetric with respect to the wall-normal
direction, obviously influenced by the presence of the free-slip walls at y = 0 and
y = L. If we estimate the mean advection speed of the coherent structures from an
average of the streamwise speed over a domain determined by the full width at
half-maximum of Cuu(�x, �y; y0), we find

Uc =
1

�2 − �1

∫ �2

�1

U (y) dy. (3.2)

Here, �2 and �1 are the widths at half-maximum of the asymmetric Cuu(�x = 0,
�y; y0) (see also figure 5b). The result of such an averaging procedure can be seen in
figure 5(c). The convection velocity as defined by (3.2) becomes smaller as the mean
velocity and coincides with the inclination of the space–time contours of the velocity
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y/δ y+ U∞ (m s−1) S (s−1) ε (m2 s−3) urms (m s−1) S∗ Rλ

HFI 0.02 34 10 1576 39.6 0.97 37.8 151
0.11 174 10 143 10.6 0.75 7.5 172
0.31 519 10 72 4.7 0.64 6.4 192

DNW 0.02 709 80 1447 1146.4 6.31 50.3 1156
0.11 3953 80 242 320.6 5.35 21.6 1574
0.34 12507 80 109 123.6 4.27 16.1 1614

Table 2. List of boundary layer measurements. We have selected three distances from the wall
for every free-stream velocity U∞. y+ = yuτ /ν with uτ = (τwall/ρ)1/2. The other quantities are
defined as in the caption of table 1.
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Figure 6. Asymmetry coefficient Qvu(�t) for two sets of turbulent boundary layer data.
Time is given in units of δ/U∞. (a) HFI measurement at Reδ = 41600 for three different
heights ỹ = y/δ above the wall: �, ỹ = 0.02; �, ỹ =0.11; �, ỹ = 0.31. (b) DNW measurement
at Reynolds number Reδ = 1237 900. Here �, ỹ = 0.02; �, ỹ = 0.11; �, ỹ = 0.34 (see table 2 for
more details).

cross-correlations of figure 3. The coherent structures thus move with the streamwise
speed as determined by an average over their size.

4. Turbulent boundary layer
The third class of flows for which we determine cross-correlation functions are

high-Reynolds-number boundary-layer flows. Experiments were done in a wind
tunnel at the Hermann-Föttinger Institute (HFI) in Berlin and the German-Dutch
Windtunnel (DNW). Triple hot-wire probes allowed measurements of all three velocity
components. With sampling rates of 20 kHz at HFI and 125 kHz at DNW, data sets
containing about a million data points at the HFI and 5 million at the DNW
could be obtained. The boundary layer thickness was found to be δ = 63 mm at
HFI and δ = 240 mm at DNW. Some parameters are summarized in table 2; further
experimental details may be found in Knobloch & Fernholz (2004).

Because of the measurements at a single location, only the short time behaviour of
the cross-correlation functions can be determined. The results for different distances
from the wall and different Reynolds numbers are shown in figure 6. For the data set
closest to the wall there is already a time interval with negative values in the asymmetry
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Figure 7. Contour plot of spatial autocorrelation function Cuu(�x,�y; y0) as given by (3.1)
in the streamwise and wall-normal directions at y0/δ = 0.21 from PIV measurements at the
DNW. The inclination of this structure is about 11◦ and similar to that in the DNS.

measure, and this interval increases as one moves further out. Comparison with the
homogeneous shear flow DNS suggests that this point is already in the transition
region away from the vortex-dominated near-wall layer. For the points furthest from
the wall no reversal to positive values is detected.

The data from HFI and DNW are collected at about the same relative positions
when heights are measured in units of the boundary layer thickness, y/δ. The
asymmetries at these heights show remarkably similar behaviour, especially for the
value ỹ = y/δ = 0.11, which is present in both data sets, and for the two similar values
ỹ = y/δ = 0.31 (HFI) and 0.34 (DNW). In wall units, ỹ = 0.11 corresponds to a height
of y+ ∼ 174 for the HFI data and y+ ∼ 3950 for the DNW data. In agreement with
the findings of De Graaff & Eaton (2000) and Del Alamo et al. (2003) for turbulent
intensities, the cross-correlations collapse in external scaling, i.e. relative to boundary
layer thickness and external velocity. A possible explanation for this could be that
the intermittent bursting activity in the boundary layer lifts fragments of the coherent
structures higher into the intermediate layer. There the further breakup is determined
by the boundary layer thickness δ (see e.g. Blackwelder & Kovaszany 1972). Analysis
of additional data shows that the asymmetry in the time correlations appears for
positions up to y = 0.5δ.

Information about the instantaneous in-plane correlations similar to figure 5(a) can
be obtained from PIV measurements at fixed heights. The data in figure 7 show that
the inclination in Cuu(�x, �y; y0) is preserved and has about the same value.

5. Summary
A comparison between the three sets of data shows that the vortex–streak

interaction is reflected most strongly in the cross-correlation function closest to the
wall or to bounding surfaces. Further away the signal becomes weaker, as expected by
the change in structures (Robinson 1991). The similarity of the asymmetry measure
further out suggests the prevalence of a similar dynamics. Interestingly, the asymmetry
measures are similar when the height is measured in units of boundary layer thickness,
rather than viscous length scales. It will be interesting to see how horsehoe vortices
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and their dynamics are reflected in correlation functions, and whether they can
explain the cross-correlation functions or whether other dynamical processes need to
be identified.

The work was supported by the Deutsche Forschungsgemeinschaft (DFG) within
the Interdisciplinary Turbulence Initiative, and by the DAAD within the PROCOPE
program. We thank the John von Neumann Institute for Computing at the
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